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X-ray diffuse scattering from disordered alloys is the primary direct source of information concerning 
the Warren parameters which describe the existing state of order. However, the short range order 
diffuse intensity is obscured by other contributions to the diffraction pattern resulting from static 
atomic displacements from the average lattice, and from effects related to thermal motion. Described 
here is a method to separate the diffraction pattern into its various components so that each may be 
interpreted independently. No assumptions are made about the nature of the atomic displacements ~i, 
except that they are sufficiently small, and that the diffraction vector k/2n is sufficiently small, that 
terms beyond the term quadratic in k • ~i may be neglected in the series expansion of exp [ik • ~i]. 

Introduction 

Since the early experiments of Wilchinsky (1944) and 
Cowley (1950), the problem of measuring and inter- 
preting the diffraction patterns of binary substitu- 
tional alloys in various states of order has attracted 
the attention of metallurgical crystallographers. The 
first approach to the interpretation of these intensity 
distributions was to assume that the two kinds of 
atoms are distributed on the atomic sites of a periodic 
structure. In this case one can show that the diffraction 
pattern may be divided into two parts: /1 which is 
independent of the state of order and which gives rise 
to the sharp fundamental Bragg reflections, and 12, 
which depends on how the atoms are arranged on the 
atomic sites./1 is the pattern one would have obtained 
if all the atoms were identical, with atomic scattering 
factor ( f )  given by the weighted average of those of 
the two kinds of atoms present. 12 depends on the dif- 
ference in the atomic scattering factors, A f, and may 
be written as a Fourier series, as first shown by Cowley, 
the lead term of which is the Laue monotonic diffuse 
scattering. If la includes sharp superstructure reflec- 
tions, then the state of order is said to be long range. 
However, if the Fourier series converges, then la 
contains no sharp features, and a Fourier inversion 
of the resultant diffuse scattering yields the Warren 
order parameters which describe the state of short 
range order existing in the crystal. 

However, extra modulations, increasing in ampli- 
tude with distance from the origin i.n reciprocal space, 
were observed and shown by Warren, Averbach & 
Roberts (1951) to result from static displacements of 
the atoms from the sites of the undistorted lattice. By 
allowing the actual interatomic vector r ~ - r q  between 
sites p and q to deviate slightly from Rp-Rq ,  the 
average value for the lattice, one may write r ~ - r q  = 
Rp-Rq+~p-~Iq .  If ~ and ~iq are sufficiently small 
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that exp[ik.(~i:o-~iq)] may be approximated by 
1 + i k .  (~i~o-Sq), the intensity expression includes a 
third term containing ik" (~i~-~iq). This third term, I3, 
gives rise to the size effect modulations (Warren et aL, 
1951). It was shown by Borie (1961) that 1~ and 12 
could be separated from 13 in two dimensions so that 
they could be treated separately. A similar treatment 
in three dimensions was given by Sparks & B o r i e  
(1965). 

However, it is known that these three terms are 
not wholly adequate to provide a reasonable complete 
representation of the diffraction pattern, because no 
account is taken of either the thermal motion or mean 
square static distortions as discussed first by Huang 
(1947). If one allows ~ip-~iq to include not only static 
displacements resulting from disorder, but dynamic 
displacements as well, then the quadratic term ([k.  (5:o 
-6q)] z) in the series expansion of exp[ ik- ( f~-6q)]  
will account for both the Huang scattering and first 
order temperature diffuse scattering. The traditional 
approach to the interpretation of the diffuse intensity 
is to treat the short range order scattering as the com- 
ponent of interest, and to attempt to remove the others 
by various sorts of corrections. It is common to 
attempt to remove the temperature diffuse scattering 
by making measurements at two temperatures, as- 
suming that the thermal intensity varies linearly with 
the temperature, and extrapolating to absolute zero. 
This is at best a fairly crude approximation, even for 
perfectly periodic crystals. Our theoretical understand- 
ing of thermal motion in aperiodic media such as 
disordered alloys is sufficiently primitive that the 
quality of the approximation in that case is unknown. 

Huang diffuse scattering is usually ignored. One 
simply hopes that most of it will be concentrated near 
the fundamental Bragg maxima, and chooses an alloy 
for study where lz is small near the fundamental 
reflections. The measurements in that region are then 
discarded and the diffuse intensity is extrapolated 
smoothly to zero at the reciprocal lattice point. For a 
simple elastic model for a crystal with no short range 
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order, Huang was able to show that most of the scat- 
tering is indeed confined to that region, and Borie 
(1957, 1959) found that for Cu3Au, Huang's model 
agreed reasonably well with experiment, even though 
the sample contained a high degree of short range 
order. But Borie & Sparks (1964) found that the model 
did not fit an alloy of Cu-16 at. % A1. There is no 
reason to suppose that Huang's simple model is 
generally applicable. 

There is thus a serious discrepancy between our abil- 
ity to make a set of diffuse scattering measurements, 
and our ability to unravel them. Measurements ob- 
tained with modern experimental techniques exhibit 
clearly all of the above components of the intensity in 
accurate and quantitative form. Their interpretation is 
dependent on a variety of primitive, oversimplified, and 
questionable models. 

We propose here to include the quadratic term which 
accounts for Huang and first order thermal contribu- 
tions tq the diffuse intensity and to provide a method 
for the separation of the diffuse intensity into its 
various components. No models or assumptions about 
the character of the atomic displacements, either 
static or dynamic, are necessary, except that k .  (~ip 
-6q)  is sufficiently small that terms beyond the qua- 
dratic one in the series expansion of exp [ik. (~i~-6q)] 
may be neglected. The method depends only on the 
way the components of the diffuse scattering must vary 
as a function of position in reciprocal space, which 
follows directly from kinematic diffraction theory. 

Diffraction theory 

We begin with the usual expression from kinematic 
theory for the intensity in electron units scattered by 
atoms of atomic scattering factor fp and positions r~' 

I= ~ ~fpfq  exp [ik. (rp-rq)]  . 
p q 

Suppose the atomic positions correspond nearly but 
not exactly to the sites R~ of a periodic structure. Then 
r~ = R~ + ~i~ where 6~ is very small, and 

I= ~ ~f~ofq exp [ik • (R~-Ra)]  exp [ik. (fip-6q)].  
p q 

Let k - ( 5 ~ - 5 q )  be sufficiently small that the second 
exponential in the above equation may be adequately 
approximated by 

exp [ik" (6v-~q)]_~ 1 + i k "  ( ~ , - ~ q ) - ½ [ k  • ( ~ p _ _ ~ q ) ] 2  . 

The intensity may then be written 

I= ~ ~ f~fq exp [ik. (Rp-  Rq) 
p q 

+ i ~ ~ fvfqk" (6v-~iq) exp [ik. (Rv-  Rq)] 
p q 

- ½ ~  ~ fpfqik " (6p-Sq)] 2 exp [ik " (Rp-Rq)] . (1) 
p q 

The first double sum is simply the intensity one would 
have observed if there were no displacements from the 
ideal atomic sites. Cowley shows that it may be written 

(11 + lz)lNJ'~ = A ( k )  

=(ma+mBlIlZ/N ~ ~ exp [ik. (R~-Rq)] 
p q 

+mAmBO -- ~)2 ~ ~loq exp [ik. (R~v- Rq)]. 
q 

(2) 

In the above, the two kinds of atoms are identified by 
subscripts A and B. mA is the fraction of the total 
number of atoms N which are A, and similarly for mB. 
The ratio fB/fa is r/, which may be a slowly varying 
quantity in reciprocal space since fA and fB may not 
have exactly the same dependence on sin 0/2. In all 
that follows, this will be ignored and t/ treated as a 
constant. The Warren order parameter apq may be 
defined in terms of the probability P~ff of finding a 
B atom at site q after having found an A atom at site p: 

a2~q= 1 - P~/mB . (3) 

As is apparent from equation (2), the function A(k) is 
periodic in reciprocal space. It is usual and convenient 
to choose a set of reciprocal vectors bl, b2, and b3 (not 
necessarily reciprocal to the usual unit-cell vectors) such 
that, if we write k = 2n(hxbl + h z b  2-1- h3b3), then the 
repeat interval of A(k) [or A(hlhzh3)] corresponds to 
unit change in the pure numbers h~, h2, and h3. 

The second double sum of equation (1),/3, gives rise 
to the atomic displacement modulations discovered 
and first treated by Warren et al. (1951). It is apparent 
from their treatment, or the somewhat more general 
discussions of Boric & Sparks (1964) that 13 may be 
written 

I3[Nf 2 = h,B(h,h2h3) + h2B(h2h3h,) + h3B(h3hlh2) . (4) 

The Fourier coefficients of the periodic function 
B(hlh2h3) [which has a three dimensional repeat interval 
identical with A(hlhzh3)] may be related directly to 
the average components of the relative displacement 
vector f i r -  5q. 

We discuss in some detail the final double sum of 
equation (1) which we call/4. It may be written 

/4 = -½  ~ ~ fpfq(k. ~)2 exp [ik. ( R p -  Rq)] 
p q 

-½ ~ ~f~fq(k" 6q) 2 exp [ik.  (Rp-Rq)]  
p q 

+ ~ ~ f~fq(k" ~pk. 5q) exp [ik. ( R ~ -  Rq)]. 
p q 

The first two sums are identical and may be combined. 
For a large crystal, we may approximate the double 
sum by N times a single sum over the average of the 
summand for pq pairs of constant R p -  Rq: 
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I4=N ~ '  (f~fq(k" fi~k " fiq))~oq exp [ik" (R:o- Rq)] 
q 

- N  ~ '  (f~f~(k'fiq)2)~oq exp [ ik.  (R~-Rq) ] .  (5) 
q 

The primes on the sums of equation (5) indicate that 
the terms for which p = q  are to be omitted, for it is 
apparent that in that case the contributions to the two 
sums cancel. If the indicated averages are taken to be 
not only spatial but averages over time as well, equa- 
tion (5) includes the contributions of both static dis- 
placements and thermal motion. 

Consider the contribution to equation (5) for all 
atomic pairs such that, say, an A atom is at both sites 
p and q. Since the number of such pairs for a particular 
R o - R  ~ is N m A ( 1 - P ~ )  or, with the aid of equation 
(3), Nma(ma + mn%~), the contribution is 

QAa=Nf2mA ~ '  exp [ik" (Ro-R~) ] (ma +mn%~) 
q 

x { @ ' 6 o k  6a )pV- ( (k -  z aa • 6~) ),~ }. (6) 

With the aid of the fact that ~- ~ ' ~ s - , -  ~'~a , ~ * A X  pq - - H * B X  pq , w e  may 
write similar expressions for the other three possible 
atomic combinations: 

QaB + Q ~  = NfZArlmamn ~ '  exp [ ik .  ( R ~ -  Rq)] 
q 

× (1-%a)  {2(k" fipk" 6.)pAg 

2 B A  - ( ( k "  ,,q,a ,2 \an_ ( (k .  fi~ ) / ~  ) , ,  } . (7) 

QBn= Nf2rlZm, ~ '  exp [ ik .  ( R , -  R~)] 
q 

× (m,+maToq) {(k • fipk " fi.).~ 

Hence, 

2 B B  - (0 ," ~) )p~ }. (8) 

/4 = QAA + Qan + QnA + Q~n. (9) 

Consider the simplification of, say, equation (6) for 
QaA. We may write 

fi ,~ = x ,~a ~ + y aa 2 + z aa 3 (1 O) 

where xo, y~, and z~ are small pure numbers. Since 
k=2~z(h~bx+hzbz+h3b3), the b,,'s being reciprocal to 
the an'S of equation (10), there results 

k"  6~ = 2rc(htx q + h2yq + h3zq) 
and 

k .  6ok. 6~ = 4rc2[h~xox~ + h~yoy q + hZzpzq 

+ hxhz(xoy~ + yoxq) 

+ hzh3(yozq + zoy ~) + h3hl(zpxa + xoza)] . (11) 

Equation (11) may now be substituted into equation 
(6). For statistically cubic alloys and with the aid of 

AA __ AA relations such as (x~,yq)o~ -(yox,~).,7, there results 

Q AA ~ t 

Uf~ -h~ exp [ik . (R,- R~)] 
q 

2 AA x {4rcZm 4(mA + mBapq ) ((xz,x~)~g-(xq)l, q )} 

+ h 2 ~ '  exp [ik" (Rp-  Rq)] 
q 

2 A A  x {4rcZmA(mA + mno%)((ypyo) ~ - (Yq)po)} 
+ h~ ~ '  exp [ ik .  (Rp-  Ra) ] 

q 

2 A A  x {4XZmA(mA + mn~l,q) ((zt, zq)vA'4 -- (zq)1, * )} 

+hlh 2 ~ '  exp [ik • (R.-Rq)]  
q 

AA AA x {87rZma(mA + mB%,a ) ((xpyq)~,q --(xqyq)~,,7 )} 

+ hzh3 ~ '  exp [ ik.  (Rp-  Rq)] 
q 

A A  A A  x {8~zZma(mA + mn%,) ((ypZa)l, , -(yqza)~, a )} 

+ h3h I ~ '  exp [ik" (Rp-  Ra) ] 
q 

A A  x (8xZma(ma + mnoq,,) ((~ZpXa)j, V - (Z,rX,)l, o ) ) .  
(12) 

We now define a periodic Nnction C'4a(hlhzh3) to have 
Fourier coefficients given by the first sum of equation 

A A  2 A A  (12), {4rc2mA(mA + mB%q) ((xpxq)uq -- (xq)pq) }, and an- 
other such function, DAA(hlhzh3) whose Fourier coef- 
ficients are those of the fourth sum of equation (12), 

/ A A  {8zc2ma(ma + mn%q) ( (xoyq)p Aa-  ,,xoyq)pq )}. For statist- 
ically cubic crystals, equation (12) may be written in 
terms of these two functions" 

Qaa 
= hzCa'a(hlhzh3) + h22CAa(hzh3h,) + hzCAa(h3hlh2) 

+ hlhzDaa(hth2h3) + hzh3Daa(hzh3hl) 
+ h3hx DAa(h3hlhz). (13) 

We may now develop expressions similar to (12) and 
(13) by substitution of equation (11) into equations 
(7) and (8), obtaining relations among the other three 
Q's and functions C an, C BA, C BB, D AB, D BA, and 
D BB. With the periodic function C defined by C =  C -4A 
+CAB-I-CBA+C BB and D given by D=DAA+DAB 
+DBA+D BB, and with the aid of equation (9), we 
may write 14 in terms of these functions: 

l,/ N f  2 = h~C(h,hzh3) + h2C(h2h3hl) .-1- h~C(h3hlh2) 

+ hxhzD(hlhzh3) + h2h3D(h2h3ha) + h3hxD(h3hlh2). 
(14) 

We note in passing that the functions C and D must 
have some special properties. Since their Fourier coef- 
ficients for whichp =q  are zero, it follows that $Cdvb = 
gDdvb =0, the integrals being performed over the cubic 
repeat interval in reciprocal space. Further the function 
C must include sharp negative peaks at the fundamental 
Bragg maxima in reciprocal space, since parts of its 

.2 AA Fourier coefficients such as - (x~),q [see the first sum 
of equation (12)] do not approach zero as R ~ - R o  
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becomes large. This simply accounts for the diminu- 
tion of the fundamental Bragg maxima due to thermal 
motion and the static atomic displacements predicted 
by Debye (1913) and Huang (1947). Since ~Cdvo over 
the repeat interval must vanish, it follows that the 
integral excluding the Bragg peak must be positive 
and just equal to the decrease in the integrated inten- 
intensity of the fundamental maxima, divided by 
NfZa(hZ+k2+ F), due to the Debye-Waller factor and 
the Huang effect. It is in this sense that there is a kind 
of conservation law for the weakened Bragg maxima 
and the temperature diffuse scattering. However, note 
that it is contained within the function C and not 
I4/Nf~. So far as the writers know, there is no require- 
ment that the integral of that quantity over the repeat 
interval vanish, because of the quadratic factors in 
hn appearing in equation (14). 

It should be emphasized that the above develop- 
ment is valid only within the quadratic approximation 
as given by equation (I). Hence the application of the 
separation technique subsequently to be described 
must be confined to regions in reciprocal space suf- 
ficiently near the origin that that approximation is 
likely to be a reasonable representation of the diffrac- 
tion pattern. 

We may now combine equations (2), (4), and (14) 
to obtain an expression for the total intensity in terms 
of A, B, C, and D: 

I/ Nf~' = A(hih2h3) + hx B(hlh2h3) + h2B(h2h3hl) 

+ h3B(h3hlh2) + h~C(hih2h3) + h22C(h2h3hl) 

+ h~C(hshlh2) + hlh2D(hlh2h3) + h2h3D(h2h3hl) 

+ hahlD(hahlh2). (15) 

Our object is to separate the measured intensity dis- 
tribution into its various parts, and to recover each of 
the four periodic functions. The Fourier coefficients 
of these functions each give an insight into a different 
aspect of the disordered alloy. 

Define an operator Aa such that 

A~l(hxh2ha)/Nf~ = I(h,h2h3)/Nf~ - I(hl - 1,h2,h3)/Nf]. 

to recover B. The three may then be used with the aid 
of equation (15) to recover A. 

Discussion 
A method for treating diffuse X-ray scattering data 
from disordered alloys, allowing its various components 
to be analyzed separately, is described. Measurements 
at only one temperature suffice, though certain parts 
of the temperature diffuse scattering and the Huang 
diffuse scattering remain combined. Presumably if one 
wished to separate these, measurements at two tem- 
peratures would be required. It should be noted that 
the procedure described here obviates the need for 
corrections for the effect of thermal motion on the 
Warren order parameters such as that proposed by 
Walker & Keating (1963). 

The result of the technique is the recovery of four 
periodic functions in reciprocal space, .4, B, C, and 
D, each of which is related to a different aspect of the 
short range structure of a cubic alloy. A is the only 
one of the four with complete cubic symmetry. Since 
it would constitute the total diffraction pattern if 
there were no static or thermal displacements of the 
atoms from their sites in the average structure, it must 
be everywhere positive. The part of A related to the 
state of order in the alloy must vanish at the funda- 
mental Bragg maxima, in order to conserve the com- 
position of the alloy. 

Like C and D, the function B has a zero average, 
since its Fourier component for p = q  is zero. It must 
also vanish at all reciprocal lattice points, both super- 
structure and fundamental nodes of the reciprocal 
lattice. B(hxh2h3) is antisymmetric in hi and symmetric 
in h2 and h3. Unlike C and D, it includes no contribu- 
tion from thermal motion. 

The functions C and D are determined by both the 
static displacements and thermal motion. C is sym- 
metric in all the variables. D(hlh2h3) is antisymmetric 
in h~ and h2, and symmetric in h3. Like B, D must 
vanish at all of the nodes of the reciprocal lattice. 

Subsequent companion papers will illustrate the 
technique by its use in determining actual short range 
structures in specific alloys. 

Analogous operators with subscripts 2 or 3 concern 
the same manipulation of the data with respect to hE 
or ha. Then because of the periodic character of the 
functions of equation (15), 

All(hlh2ha)/Nf 2 = B(hlhEh3) + (2h I - 1)C(hlh2h3) 

+ h2D(hlh2h3) + h3D(h3hlh2) , (16) 
and 

and 
A2I(hlh2h3)/NfE=2C(hlh2h3) , (17) 

A2A lI(hlh2h3)/ N f  2 = D(hlh2h3) . (18) 

Equations (17) and (18) yield directly the functions 
C and D which may be substituted into equation (16) 
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